Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI) / transcatheter aortic valve replacement (TAVR): An expert consensus document of the Society of Cardiovascular Computed Tomography

Published:January 07, 2019DOI:https://doi.org/10.1016/j.jcct.2018.11.008
      Since the publication of the first expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR) by the Society of Cardiovascular Computed Tomography (SCCT) in 2012
      • Achenbach S.
      • Delgado V.
      • Hausleiter J.
      • Schoenhagen P.
      • Min J.K.
      • Leipsic J.A.
      SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR).
      , there has been tremendous advancement in the field. Significant technological advancements and a wealth of trial data have led to deep integration of TAVI/TAVR and CT Imaging into clinical practice. The indications for TAVI/TAVR as the treatment strategy for patients with symptomatic severe aortic stenosis (AS) has expanded from those who are ineligible for surgery or high risk surgical candidates to also now include those at intermediate risk for conventional surgical valve replacement.
      • Leon M.B.
      • Smith C.R.
      • Mack M.
      • et al.
      Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.
      • Kapadia S.R.
      • Leon M.B.
      • Makkar R.R.
      • et al.
      5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial.
      • Mack M.J.
      • Leon M.B.
      • Smith C.R.
      • et al.
      5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial.
      • Leon M.B.
      • Smith C.R.
      • Mack M.J.
      • et al.
      Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.
      • Reardon M.J.
      • Van Mieghem N.M.
      • Popma J.J.
      • et al.
      Surgical or transcatheter aortic-valve replacement in intermediate-risk patients.
      To read this article in full you will need to make a payment

      References

        • Achenbach S.
        • Delgado V.
        • Hausleiter J.
        • Schoenhagen P.
        • Min J.K.
        • Leipsic J.A.
        SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR).
        J Cardiovasc Comput Tomogr. 2012; 6: 366-380https://doi.org/10.1016/j.jcct.2012.11.002
        • Leon M.B.
        • Smith C.R.
        • Mack M.
        • et al.
        Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery.
        N Engl J Med. 2010; 363: 1597-1607https://doi.org/10.1056/NEJMoa1008232
        • Kapadia S.R.
        • Leon M.B.
        • Makkar R.R.
        • et al.
        5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial.
        Lancet. 2015; 385: 2485-2491https://doi.org/10.1016/S0140-6736(15)60290-2
        • Mack M.J.
        • Leon M.B.
        • Smith C.R.
        • et al.
        5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial.
        Lancet. 2015; 385: 2477-2484https://doi.org/10.1016/S0140-6736(15)60308-7
        • Leon M.B.
        • Smith C.R.
        • Mack M.J.
        • et al.
        Transcatheter or surgical aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2016; 374: 1609-1620https://doi.org/10.1056/NEJMoa1514616
        • Reardon M.J.
        • Van Mieghem N.M.
        • Popma J.J.
        • et al.
        Surgical or transcatheter aortic-valve replacement in intermediate-risk patients.
        N Engl J Med. 2017; 376: 1321-1331https://doi.org/10.1056/NEJMoa1700456
        • Leetmaa T.
        • Hansson N.C.
        • Leipsic J.
        • et al.
        Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography.
        Circ Cardiovasc Interv. 2015; 8: 1-9https://doi.org/10.1161/CIRCINTERVENTIONS.114.001596
        • Pache G.
        • Schoechlin S.
        • Blanke P.
        • et al.
        Early hypo-attenuated leaflet thickening in balloon-expandable transcatheter aortic heart valves.
        Eur Heart J. 2016; 37: 2263-2271https://doi.org/10.1093/eurheartj/ehv526
        • Abbara S.
        • Blanke P.
        • Maroules C.D.
        • et al.
        SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the north American society for cardiovascular imaging (NASCI).
        J Cardiovasc Comput Tomogr. 2016; 10: 435-449https://doi.org/10.1016/j.jcct.2016.10.002
        • Suchá D.
        • Tuncay V.
        • Prakken N.H.J.
        • et al.
        Does the aortic annulus undergo conformational change throughout the cardiac cycle? A systematic review.
        Eur Heart J Cardiovasc Imaging. 2015; 16: 1307-1317https://doi.org/10.1093/ehjci/jev210
        • Jurencak T.
        • Turek J.
        • Kietselaer B.L.J.H.
        • et al.
        MDCT evaluation of aortic root and aortic valve prior to TAVI. What is the optimal imaging time point in the cardiac cycle?.
        Eur Radiol. 2015; 25: 1975-1983https://doi.org/10.1007/s00330-015-3607-5
        • Willson A.B.
        • Webb J.G.
        • Freeman M.
        • et al.
        Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: comparison with transesophageal echocardiography and rationale for implementation in a prospective trial.
        J Cardiovasc Comput Tomogr. 2012; 6: 406-414https://doi.org/10.1016/j.jcct.2012.10.002
        • De Heer L.M.
        • Budde R.P.J.
        • Van Prehn J.
        • et al.
        Pulsatile distention of the nondiseased and stenotic aortic valve annulus: analysis with electrocardiogram-gated computed tomography.
        Ann Thorac Surg. 2012; 93: 516-522https://doi.org/10.1016/j.athoracsur.2011.08.068
        • Lewis M.A.
        • Pascoal A.
        • Keevil S.F.
        • Lewis C.A.
        Selecting a CT scanner for cardiac imaging: the heart of the matter.
        Br J Radiol. 2016; 89: 20160376https://doi.org/10.1259/bjr.20160376
        • Mylotte D.
        • Sudre A.
        • Teiger E.
        • et al.
        Transcarotid transcatheter aortic valve replacement feasibility and safety.
        JACC Cardiovasc Interv. 2016; 9: 472-480https://doi.org/10.1016/j.jcin.2015.11.045
        • Søndergaard L.
        • Steinbrüchel D.A.
        • Ihlemann N.
        • et al.
        Two-year outcomes in patients with severe aortic valve stenosis randomized to transcatheter versus surgical aortic valve replacement: the all-comers nordic aortic valve intervention randomized clinical trial.
        Circ Cardiovasc Interv. 2016; 9: 1-10https://doi.org/10.1161/CIRCINTERVENTIONS.115.003665
        • Tamburino C.
        • Barbanti M.
        • D'Errigo P.
        • et al.
        1-year outcomes after transfemoral transcatheter or surgical aortic valve replacement: results from the Italian OBSERVANT study.
        J Am Coll Cardiol. 2015; 66: 804-812https://doi.org/10.1016/j.jacc.2015.06.013
        • Spagnolo P.
        • Giglio M.
        • Di Marco D.
        • et al.
        Feasibility of ultra-low contrast 64-slice computed tomography angiography before transcatheter aortic valve implantation: a real-world experience.
        Eur Heart J Cardiovasc Imaging. 2016; 17: 24-33https://doi.org/10.1093/ehjci/jev175
        • Pulerwitz T.C.
        • Khalique O.K.
        • Nazif T.N.
        • et al.
        Very low intravenous contrast volume protocol for computed tomography angiography providing comprehensive cardiac and vascular assessment prior to transcatheter aortic valve replacement in patients with chronic kidney disease.
        J Cardiovasc Comput Tomogr. 2016; 10: 316-321https://doi.org/10.1016/j.jcct.2016.03.005
        • Bittner D.O.
        • Arnold M.
        • Klinghammer L.
        • et al.
        Contrast volume reduction using third generation dual source computed tomography for the evaluation of patients prior to transcatheter aortic valve implantation.
        Eur Radiol. 2016; 26: 4497-4504https://doi.org/10.1007/s00330-016-4320-8
        • Nijssen E.C.
        • Rennenberg R.J.
        • Nelemans P.J.
        • et al.
        Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial.
        Lancet (London, England). 2017; 389: 1312-1322https://doi.org/10.1016/S0140-6736(17)30057-0
        • Su X.
        • Xie X.
        • Liu L.
        • et al.
        Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and bayesian network meta-analysis.
        Am J Kidney Dis. 2017; 69: 69-77https://doi.org/10.1053/j.ajkd.2016.07.033
        • Clavel M.A.
        • Messika-Zeitoun D.
        • Pibarot P.
        • et al.
        The complex nature of discordant severe calcified aortic valve disease grading: new insights from combined Doppler echocardiographic and computed tomographic study.
        J Am Coll Cardiol. 2013; 62: 2329-2338https://doi.org/10.1016/j.jacc.2013.08.1621
        • Baumgartner H.
        • Falk V.
        • Bax J.J.
        • et al.
        ESC/EACTS guidelines for the management of valvular heart disease: the task force for the management of valvular heart disease of the european society of cardiology (ESC) and the european association for cardio-thoracic surgery (EACTS).
        Eur Heart J. 2017; 2017 (September): 1-53https://doi.org/10.1093/eurheartj/ehx391
        • Pawade T.
        • Clavel M.-A.
        • Tribouilloy C.
        • et al.
        Computed tomography aortic valve calcium scoring in patients with aortic stenosis.
        Circ Cardiovasc Imaging. 2018; 11: e007146https://doi.org/10.1161/CIRCIMAGING.117.007146
        • Agatston A.S.
        • Janowitz W.R.
        • Hildner F.J.
        • Zusmer N.R.
        • Viamonte M.
        • Detrano R.
        Quantification of coronary artery calcium using ultrafast computed tomography.
        J Am Coll Cardiol. 1990; 15: 827-832https://doi.org/10.1016/0735-1097(90)90282-T
        • Hecht H.S.
        • Blaha M.J.
        • Kazerooni E.A.
        • et al.
        CAC-DRS: coronary artery calcium data and reporting system. An expert consensus document of the society of cardiovascular computed tomography (SCCT).
        J Cardiovasc Comput Tomogr. March 2018; https://doi.org/10.1016/j.jcct.2018.03.008
        • Boehm T.
        • Husmann L.
        • Leschka S.
        • Desbiolles L.
        • Marincek B.
        • Alkadhi H.
        Image quality of the aortic and mitral valve with CT:. Relative versus absolute delay reconstruction.
        Acad Radiol. 2007; 14: 613-624https://doi.org/10.1016/j.acra.2007.02.002
        • Suh Y.J.
        • Im D.J.
        • Hong Y.J.
        • et al.
        Absolute-delay multiphase reconstruction reduces prosthetic valve-related and atrial fibrillation-related artifacts at cardiac CT.
        Am J Roentgenol. 2017; 208: W160-W167https://doi.org/10.2214/AJR.16.16839
        • Piazza N.
        • de Jaegere P.
        • Schultz C.
        • Becker A.E.
        • Serruys P.W.
        • Anderson R.H.
        Anatomy of the aortic valvar complex and its implications for transcatheter implantation of the aortic valve.
        Circ Cardiovasc Interv. 2008; 1: 74-81https://doi.org/10.1161/CIRCINTERVENTIONS.108.780858
        • Anderson R.H.
        Clinical anatomy of the aortic root.
        Heart. 2000; 84: 670-673https://doi.org/10.1136/heart.84.6.670
        • Murphy D.T.
        • Blanke P.
        • Alaamri S.
        • et al.
        Dynamism of the aortic annulus: effect of diastolic versus systolic CT annular measurements on device selection in transcatheter aortic valve replacement (TAVR).
        J Cardiovasc Comput Tomogr. 2016; 10: 37-43https://doi.org/10.1016/j.jcct.2015.07.008
        • Blanke P.
        • Russe M.
        • Leipsic J.
        • et al.
        Conformational pulsatile changes of the aortic annulus: impact on prosthesis sizing by computed tomography for transcatheter aortic valve replacement.
        JACC Cardiovasc Interv. 2012; 5: 984-994https://doi.org/10.1016/j.jcin.2012.05.014
        • Hansson N.C.
        • Nørgaard B.L.
        • Barbanti M.
        • et al.
        The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement.
        J Cardiovasc Comput Tomogr. 2015; 9: 382-392https://doi.org/10.1016/j.jcct.2015.04.002
        • Latsios G.
        • Gerckens U.
        • Buellesfeld L.
        • et al.
        “Device landing zone” calcification, assessed by MSCT, as a predictive factor for pacemaker implantation after TAVI.
        Cathet Cardiovasc Interv. 2010; 76: 431-439https://doi.org/10.1002/ccd.22563
        • Ewe S.H.
        • Ng A.C.T.
        • Schuijf J.D.
        • et al.
        Location and severity of aortic valve calcium and implications for aortic regurgitation after transcatheter aortic valve implantation.
        Am J Cardiol. 2011; 108: 1470-1477https://doi.org/10.1016/j.amjcard.2011.07.007
        • Jilaihawi H.
        • Makkar R.R.
        • Kashif M.
        • et al.
        A revised methodology for aortic-valvar complex calcium quantification for transcatheter aortic valve implantation.
        Eur Heart J Cardiovasc Imaging. 2014; 15: 1324-1332https://doi.org/10.1093/ehjci/jeu162
        • Khalique O.K.
        • Hahn R.T.
        • Gada H.
        • et al.
        Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement.
        JACC Cardiovasc Interv. 2014; 7: 885-894https://doi.org/10.1016/j.jcin.2014.03.007
        • Abramowitz Y.
        • Jilaihawi H.
        • Chakravarty T.
        • et al.
        Balloon-expandable transcatheter aortic valve replacement in patients with extreme aortic valve calcification.
        Cathet Cardiovasc Interv. 2016; 87: 1173-1179https://doi.org/10.1002/ccd.26311
        • Hansson N.C.
        • Leipsic J.
        • Pugliese F.
        • et al.
        Aortic valve and left ventricular outflow tract calcium volume and distribution in transcatheter aortic valve replacement: influence on the risk of significant paravalvular regurgitation.
        J Cardiovasc Comput Tomogr. 2018; (September 2017)https://doi.org/10.1016/j.jcct.2018.02.002
        • Fujita B.
        • Kütting M.
        • Seiffert M.
        • et al.
        Calcium distribution patterns of the aortic valve as a risk factor for the need of permanent pacemaker implantation after transcatheter aortic valve implantation.
        Eur Hear J – Cardiovasc Imaging. 2016; 17: 1385-1393https://doi.org/10.1093/ehjci/jev343
        • Maeno Y.
        • Abramowitz Y.
        • Kawamori H.
        • et al.
        A highly predictive risk model for pacemaker implantation after TAVR.
        JACC Cardiovasc Imaging. 2017; 10: 1139-1147https://doi.org/10.1016/j.jcmg.2016.11.020
        • Mack M.J.
        • Brennan J.M.
        • Brindis R.
        • et al.
        Outcomes following transcatheter aortic valve replacement in the United States.
        JAMA, J Am Med Assoc. 2013; 310: 2069-2077https://doi.org/10.1001/jama.2013.282043
        • Yoon S.-H.
        • Bleiziffer S.
        • De Backer O.
        • et al.
        Outcomes in transcatheter aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis.
        J Am Coll Cardiol. 2017; 69: 2579-2589https://doi.org/10.1016/j.jacc.2017.03.017
        • Sievers H.H.
        • Schmidtke C.
        A classification system for the bicuspid aortic valve from 304 surgical specimens.
        J Thorac Cardiovasc Surg. 2007; 133: 1226-1233https://doi.org/10.1016/j.jtcvs.2007.01.039
        • Michelena H.I.
        • Prakash S.K.
        • Corte A Della
        • et al.
        Bicuspid aortic valve identifying knowledge gaps and rising to the challenge from the international bicuspid aortic valve consortium (BAVCON).
        Circulation. 2014; 129: 2691-2704https://doi.org/10.1161/CIRCULATIONAHA.113.007851
        • Jilaihawi H.
        • Chen M.
        • Webb J.
        • et al.
        A bicuspid aortic valve imaging classification for the TAVR era.
        JACC Cardiovasc Imaging. 2016; 9: 1145-1158https://doi.org/10.1016/j.jcmg.2015.12.022
        • Ribeiro H.B.
        • Webb J.G.
        • Makkar R.R.
        • et al.
        Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry.
        J Am Coll Cardiol. 2013; 62: 1552-1562https://doi.org/10.1016/j.jacc.2013.07.040
        • Ribeiro H.B.
        • Nombela-Franco L.
        • Urena M.
        • et al.
        Coronary obstruction following transcatheter aortic valve implantation: a systematic review.
        JACC Cardiovasc Interv. 2013; 6: 452-461https://doi.org/10.1016/j.jcin.2012.11.014
        • Binder R.K.
        • Leipsic J.
        • Wood D.
        • et al.
        Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.
        Circ Cardiovasc Interv. 2012; 5: 247-252https://doi.org/10.1161/CIRCINTERVENTIONS.111.966531
        • Gurvitch R.
        • Wood D.A.
        • Leipsic J.
        • et al.
        Multislice computed tomography for prediction of optimal angiographic deployment projections during transcatheter aortic valve implantation.
        JACC Cardiovasc Interv. 2010; 3: 1157-1165https://doi.org/10.1016/j.jcin.2010.09.010
        • Samim M.
        • Stella P.R.
        • Agostoni P.
        • et al.
        Automated 3D analysis of pre-procedural MDCT to predict annulus plane angulation and C-arm positioning: benefit on procedural outcome in patients referred for TAVR.
        JACC Cardiovasc Imaging. 2013; 6: 238-248https://doi.org/10.1016/j.jcmg.2012.12.004
        • Hell M.M.
        • Biburger L.
        • Marwan M.
        • et al.
        Prediction of fluoroscopic angulations for transcatheter aortic valve implantation by CT angiography: influence on procedural parameters.
        Eur Heart J Cardiovasc Imaging. 2017; 18: 906-914https://doi.org/10.1093/ehjci/jew144
        • Gurvitch R.
        • Webb J.G.
        • Yuan R.
        • et al.
        Aortic annulus diameter determination by multidetector computed tomography: reproducibility, applicability, and implications for transcatheter aortic valve implantation.
        JACC Cardiovasc Interv. 2011; 4: 1235-1245https://doi.org/10.1016/j.jcin.2011.07.014
        • Blanke P.
        • Willson A.B.
        • Webb J.G.
        • et al.
        Oversizing in transcatheter aortic valve replacement, a commonly used term but a poorly understood one: dependency on definition and geometrical measurements.
        J Cardiovasc Comput Tomogr. 2014; 8: 67-76https://doi.org/10.1016/j.jcct.2013.12.020
        • Blanke P.
        • Pibarot P.
        • Hahn R.
        • et al.
        Computed tomography–based oversizing degrees and incidence of paravalvular regurgitation of a new generation transcatheter heart valve.
        JACC Cardiovasc Interv. 2017; 10: 810-820https://doi.org/10.1016/j.jcin.2017.02.021
        • Popma J.J.
        • Reardon M.J.
        • Khabbaz K.
        • et al.
        Early clinical outcomes after transcatheter aortic valve replacement using a novel self-expanding bioprosthesis in patients with severe aortic stenosis who are suboptimal for surgery: results of the evolut R U.S. Study.
        JACC Cardiovasc Interv. 2017; 10: 268-275https://doi.org/10.1016/j.jcin.2016.08.050
        • Barbanti M.
        • Yang T.H.
        • Rodès Cabau J.
        • et al.
        Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement.
        Circulation. 2013; 128: 244-253https://doi.org/10.1161/CIRCULATIONAHA.113.002947
        • Barbanti M.
        • Buccheri S.
        • Rodés-Cabau J.
        • et al.
        Transcatheter aortic valve replacement with new-generation devices: a systematic review and meta-analysis.
        Int J Cardiol. 2017; 245: 83-89https://doi.org/10.1016/j.ijcard.2017.07.083
        • Urena M.
        • Mok M.
        • Serra V.
        • et al.
        Predictive factors and long-term clinical consequences of persistent left bundle branch block following transcatheter aortic valve implantation with a balloon-expandable valve.
        J Am Coll Cardiol. 2012; 60: 1743-1752https://doi.org/10.1016/j.jacc.2012.07.035
        • Piazza N.
        • Onuma Y.
        • Jesserun E.
        • et al.
        Early and persistent intraventricular conduction abnormalities and requirements for pacemaking after percutaneous replacement of the aortic valve.
        JACC Cardiovasc Interv. 2008; 1: 310-316https://doi.org/10.1016/j.jcin.2008.04.007
        • Franzoni I.
        • Latib A.
        • Maisano F.
        • et al.
        Comparison of incidence and predictors of left bundle branch block after transcatheter aortic valve implantation using the corevalve versus the edwards valve.
        Am J Cardiol. 2013; 112: 554-559https://doi.org/10.1016/j.amjcard.2013.04.026
        • Colombo A.
        • Latib A.
        Left bundle branch block after transcatheter aortic valve implantation: inconsequential or a clinically important endpoint?.
        J Am Coll Cardiol. 2012; 60: 1753-1755https://doi.org/10.1016/j.jacc.2012.07.034
        • Calvi V.
        • Conti S.
        • Pruiti G.P.
        • et al.
        Incidence rate and predictors of permanent pacemaker implantation after transcatheter aortic valve implantation with self-expanding CoreValve prosthesis.
        J Intervent Card Electrophysiol. 2012; 34: 189-195https://doi.org/10.1007/s10840-011-9634-5
        • Aktug Ö.
        • Dohmen G.
        • Brehmer K.
        • et al.
        Incidence and predictors of left bundle branch block after transcatheter aortic valve implantation.
        Int J Cardiol. 2012; 160: 26-30https://doi.org/10.1016/j.ijcard.2011.03.004
        • Sinning J.M.
        • Petronio A.S.
        • Van Mieghem N.
        • et al.
        Relation between clinical best practices and 6-month outcomes after transcatheter aortic valve implantation with CoreValve (from the ADVANCE II study).
        Am J Cardiol. 2017; 119: 84-90https://doi.org/10.1016/j.amjcard.2016.09.016
        • Hamdan A.
        • Guetta V.
        • Klempfner R.
        • et al.
        Inverse relationship between membranous septal length and the risk of atrioventricular block in patients undergoing transcatheter aortic valve implantation.
        JACC Cardiovasc Interv. 2015; 8: 1218-1228https://doi.org/10.1016/j.jcin.2015.05.010
        • Van Mieghem N.M.
        • Tchetche D.
        • Chieffo A.
        • et al.
        Incidence, predictors, and implications of access site complications with transfemoral transcatheter aortic valve implantation.
        Am J Cardiol. 2012; 110: 1361-1367https://doi.org/10.1016/j.amjcard.2012.06.042
        • Tamburino C.
        • Capodanno D.
        • Ramondo A.
        • et al.
        Incidence and predictors of early and late mortality after transcatheter aortic valve implantation in 663 patients with severe aortic stenosis.
        Circulation. 2011; 123: 299-308https://doi.org/10.1161/CIRCULATIONAHA.110.946533
        • Basir M.B.
        • Velez C.
        • Fuller B.
        • et al.
        Rates of vascular access use in transcatheter aortic valve replacement: a look into the next generation.
        Cathet Cardiovasc Interv. 2016; 87: E166-E171https://doi.org/10.1002/ccd.26116
        • Svensson L.G.
        • Dewey T.
        • Kapadia S.
        • et al.
        United States feasibility study of transcatheter insertion of a stented aortic valve by the left ventricular apex.
        Ann Thorac Surg. 2008; 86 (discussion 54-5): 46-54https://doi.org/10.1016/j.athoracsur.2008.04.049
        • Abu Saleh W.K.
        • Goswami R.
        • Chinnadurai P.
        • et al.
        Direct aortic access transcatheter aortic valve replacement: three-dimensional computed tomography planning and real-time fluoroscopic image guidance.
        J Heart Valve Dis. 2015; 24: 420-425
        http://www.ncbi.nlm.nih.gov/pubmed/26897809
        Date accessed: November 25, 2017
        • Okuyama K.
        • Jilaihawi H.
        • Kashif M.
        • et al.
        Transfemoral access assessment for transcatheter aortic valve replacement: evidence-based application of computed tomography over invasive angiography.
        Circ Cardiovasc Imaging. 2014; 8https://doi.org/10.1161/CIRCIMAGING.114.001995
        • Manunga J.M.
        • Gloviczki P.
        • Oderich G.S.
        • et al.
        Femoral artery calcification as a determinant of success for percutaneous access for endovascular abdominal aortic aneurysm repair.
        J Vasc Surg. 2013; 58: 1208-1212https://doi.org/10.1016/j.jvs.2013.05.028
        • Toggweiler S.
        • Gurvitch R.
        • Leipsic J.
        • et al.
        Percutaneous aortic valve replacement: vascular outcomes with a fully percutaneous procedure.
        J Am Coll Cardiol. 2012; 59: 113-118https://doi.org/10.1016/j.jacc.2011.08.069
        • Hayashida K.
        • Lefvre T.
        • Chevalier B.
        • et al.
        Transfemoral aortic valve implantation: new criteria to predict vascular complications.
        JACC Cardiovasc Interv. 2011; 4: 851-858https://doi.org/10.1016/j.jcin.2011.03.019
        • Rodés-Cabau J.
        • Webb J.G.
        • Cheung A.
        • et al.
        Transcatheter aortic valve implantation for the treatment of severe symptomatic aortic stenosis in patients at very high or prohibitive surgical risk. Acute and late outcomes of the multicenter Canadian experience.
        J Am Coll Cardiol. 2010; 55: 1080-1090https://doi.org/10.1016/j.jacc.2009.12.014
        • Gleason T.G.
        • Schindler J.T.
        • Hagberg R.C.
        • et al.
        Subclavian/axillary access for self-expanding transcatheter aortic valve replacement renders equivalent outcomes as transfemoral.
        Ann Thorac Surg. 2018; 105: 477-483https://doi.org/10.1016/j.athoracsur.2017.07.017
        • Wee I.J.Y.
        • Stonier T.
        • Harrison M.
        • Choong A.M.T.L.
        Transcarotid transcatheter aortic valve implantation: a systematic review.
        J Cardiol. 2018; 71: 525-533https://doi.org/10.1016/j.jjcc.2018.01.010
        • Greenbaum A.B.
        • Babaliaros V.C.
        • Chen M.Y.
        • et al.
        Transcaval access and closure for transcatheter aortic valve replacement: a prospective investigation.
        J Am Coll Cardiol. 2017; 69: 511-521https://doi.org/10.1016/j.jacc.2016.10.024
        • Andreini D.
        • Pontone G.
        • Mushtaq S.
        • et al.
        Diagnostic accuracy of multidetector computed tomography coronary angiography in 325 consecutive patients referred for transcatheter aortic valve replacement.
        Am Heart J. 2014; 168: 332-339https://doi.org/10.1016/j.ahj.2014.04.022
        • Hamdan A.
        • Wellnhofer E.
        • Konen E.
        • et al.
        Coronary CT angiography for the detection of coronary artery stenosis in patients referred for transcatheter aortic valve replacement.
        J Cardiovasc Comput Tomogr. 2015; 9: 31-41https://doi.org/10.1016/j.jcct.2014.11.008
        • Harris B.S.
        • De Cecco C.N.
        • Schoepf U.J.
        • et al.
        Dual-source CT imaging to plan transcatheter aortic valve replacement: accuracy for diagnosis of obstructive coronary artery disease.
        Radiology. 2015; 275: 80-88https://doi.org/10.1148/radiol.14140763
        • Opolski M.P.
        • Kim W.-K.
        • Liebetrau C.
        • et al.
        Diagnostic accuracy of computed tomography angiography for the detection of coronary artery disease in patients referred for transcatheter aortic valve implantation.
        Clin Res Cardiol. 2015; 104: 471-480https://doi.org/10.1007/s00392-014-0806-z
        • Matsumoto S.
        • Yamada Y.
        • Hashimoto M.
        • et al.
        CT imaging before transcatheter aortic valve implantation (TAVI) using variable helical pitch scanning and its diagnostic performance for coronary artery disease.
        Eur Radiol. 2017; 27: 1963-1970https://doi.org/10.1007/s00330-016-4547-4
        • Rossi A.
        • De Cecco C.N.
        • Kennon S.R.O.
        • et al.
        CT angiography to evaluate coronary artery disease and revascularization requirement before trans-catheter aortic valve replacement.
        J Cardiovasc Comput Tomogr. 2017; 11: 338-346https://doi.org/10.1016/j.jcct.2017.06.001
        • Leon M.B.
        • Piazza N.
        • Nikolsky E.
        • et al.
        Standardized endpoint definitions for transcatheter aortic valve implantation clinical trials: a consensus report from the Valve Academic Research Consortium.
        Eur Heart J. 2011; 32: 205-217https://doi.org/10.1093/eurheartj/ehq406
        • Kappetein A.P.
        • Head S.J.
        • Généreux P.
        • et al.
        Updated standardized endpoint definitions for transcatheter aortic valve implantation.
        J Am Coll Cardiol. 2012; 60: 1438-1454https://doi.org/10.1016/j.jacc.2012.09.001
        • Salgado R.A.
        • Budde R.P.J.
        • Leiner T.
        • et al.
        Transcatheter aortic valve replacement: postoperative CT findings of Sapien and CoreValve transcatheter heart valves.
        Radiographics. 2014; 34: 1517-1536https://doi.org/10.1148/rg.346130149
        • Blanke P.
        • Schoepf U.J.
        • Leipsic J.A.
        CT in transcatheter aortic valve replacement.
        Radiology. 2013; 269: 650-669https://doi.org/10.1148/radiol.13120696
        • Symersky P.
        • Budde R.P.J.
        • Prokop M.
        • de Mol B.A.J.M.
        Multidetector-row computed tomography imaging characteristics of mechanical prosthetic valves.
        J Heart Valve Dis. 2011; 20: 216-222
        http://www.ncbi.nlm.nih.gov/pubmed/21560825
        Date accessed: November 24, 2017
        • Willson A.B.
        • Webb J.G.
        • Labounty T.M.
        • et al.
        3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis.
        J Am Coll Cardiol. 2012; 59: 1287-1294https://doi.org/10.1016/j.jacc.2011.12.015
        • Willson A.B.
        • Webb J.G.
        • Gurvitch R.
        • et al.
        Structural integrity of balloon-expandable stents after transcatheter aortic valve replacement: assessment by multidetector computed tomography.
        JACC Cardiovasc Interv. 2012; 5: 525-532https://doi.org/10.1016/j.jcin.2012.03.007
        • Binder R.K.
        • Webb J.G.
        • Toggweiler S.
        • et al.
        Impact of post-implant SAPIEN XT geometry and position on conduction disturbances, hemodynamic performance, and paravalvular regurgitation.
        JACC Cardiovasc Interv. 2013; 6: 462-468https://doi.org/10.1016/j.jcin.2012.12.128
        • Tan J.S.
        • Leipsic J.
        • Perlman G.
        • et al.
        A strategy of underexpansion and ad hoc post-dilation of balloon-expandable transcatheter aortic valves in patients at risk of annular injury favorable mid-term outcomes.
        JACC Cardiovasc Interv. 2015; 8: 1727-1732https://doi.org/10.1016/j.jcin.2015.08.011
        • Gooley R.P.
        • Cameron J.D.
        • Meredith I.T.
        Assessment of the geometric interaction between the lotus transcatheter aortic valve prosthesis and the native ventricular aortic interface by 320-multidetector computed tomography.
        JACC Cardiovasc Interv. 2015; 8: 740-749https://doi.org/10.1016/j.jcin.2015.03.002
        • Bekeredjian R.
        • Bodingbauer D.
        • Hofmann N.P.
        • et al.
        The extent of aortic annulus calcification is a predictor of postprocedural eccentricity and paravalvular regurgitation: a pre- and postinterventional cardiac computed tomography angiography study.
        J Invasive Cardiol. 2015; 27: 172-180
        http://www.ncbi.nlm.nih.gov/pubmed/25740972
        Date accessed: November 24, 2017
        • Schuhbaeck A.
        • Weingartner C.
        • Arnold M.
        • et al.
        Aortic annulus eccentricity before and after transcatheter aortic valve implantation: comparison of balloon-expandable and self-expanding prostheses.
        Eur J Radiol. 2015; 84: 1242-1248https://doi.org/10.1016/j.ejrad.2015.04.003
        • Nishimura R.A.
        • Otto C.M.
        AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        2017https://doi.org/10.1161/CIR.0000000000000503 (2017)
        • Makkar R.R.
        • Fontana G.
        • Jilaihawi H.
        • et al.
        Possible subclinical leaflet thrombosis in bioprosthetic aortic valves.
        N Engl J Med. 2015; 373: 2015-2024https://doi.org/10.1056/NEJMoa1509233
        • Hansson N.C.
        • Grove E.L.
        • Andersen H.R.
        • et al.
        Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications.
        J Am Coll Cardiol. 2016; 68: 2059-2069https://doi.org/10.1016/j.jacc.2016.08.010
        • Yanagisawa R.
        • Hayashida K.
        • Yamada Y.
        • et al.
        Incidence, predictors, and mid-term outcomes of possible leaflet thrombosis after TAVR.
        JACC Cardiovasc Imaging. 2017; 10: 1-11https://doi.org/10.1016/j.jcmg.2016.11.005
        • Sondergaard L.
        • De Backer O.
        • Kofoed K.F.
        • et al.
        Natural history of subclinical leaflet thrombosis affecting motion in bioprosthetic aortic valves.
        Eur Heart J. 2017; : 2201-2207https://doi.org/10.1093/eurheartj/ehx369
        • Landes U.
        • Kornowski R.
        Transcatheter valve implantation in degenerated bioprosthetic surgical valves (ViV) in aortic, mitral, and tricuspid positions: a review.
        Struct Hear. 2017; 00: 1-11https://doi.org/10.1080/24748706.2017.1372649
        • Ribeiro H.B.
        • Rodés-Cabau J.
        • Blanke P.
        • et al.
        Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry.
        Eur Heart J. 2018; 39: 687-695https://doi.org/10.1093/eurheartj/ehx455
        • Blanke P.
        • Soon J.
        • Dvir D.
        • et al.
        Computed tomography assessment for transcatheter aortic valve in valve implantation: the vancouver approach to predict anatomical risk for coronary obstruction and other considerations.
        J Cardiovasc Comput Tomogr. 2016; 10: 491-499https://doi.org/10.1016/j.jcct.2016.09.004
        • Bapat V.N.
        • Attia R.
        • Thomas M.
        Effect of valve design on the stent internal diameter of a bioprosthetic valve: a concept of true internal diameter and its implications for the valve-in-valve procedure.
        JACC Cardiovasc Interv. 2014; 7: 115-127https://doi.org/10.1016/j.jcin.2013.10.012
        • Suchá D.
        • Daans C.G.
        • Symersky P.
        • et al.
        Reliability, agreement, and presentation of a reference standard for assessing implanted heart valve sizes by multidetector-row computed tomography.
        Am J Cardiol. 2015; 116: 112-120https://doi.org/10.1016/j.amjcard.2015.03.048