Advertisement
Invited review| Volume 15, ISSUE 3, P218-225, May 2021

Download started.

Ok

Spectral photon-counting CT in cardiovascular imaging

Published:December 20, 2020DOI:https://doi.org/10.1016/j.jcct.2020.12.005

      Abstract

      Photon-counting computed tomography (PCCT) is an emerging technology promising to substantially improve cardiovascular imaging. Recent engineering and manufacturing advances by several vendors are expected to imminently launch this new technology into clinical reality. Photon-counting detectors (PCDs) have multiple potential advantages over conventional energy integrating detectors (EIDs) such as the absence of electronic noise, multi-energy capability, and increased spatial resolution. These developments will have different timescales for implementation and will affect different clinical scopes. We describe the technical aspects of PCCT, explain the current developments, and finally discuss potential advantages of PCCT in cardiovascular imaging.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      Full access to the journal is a member benefit for SCCT Members, Login via the SCCT website to access all journal content.

      Subscribe:

      Subscribe to Journal of Cardiovascular Computed Tomography
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sellerer T.
        • Noël P.B.
        • Patino M.
        • et al.
        Dual-energy CT: a phantom comparison of different platforms for abdominal imaging.
        Eur Radiol. 2018; 28: 2745-2755
        • Takagi H.
        • Tanaka R.
        • Nagata K.
        • et al.
        Diagnostic performance of coronary CT angiography with ultra-high-resolution CT: comparison with invasive coronary angiography.
        Eur J Radiol. 2018; 101: 30-37
        • Oostveen L.J.
        • Boedeker K.L.
        • Brink M.
        • Prokop M.
        • de Lange F.
        • Sechopoulos I.
        Physical evaluation of an ultra-high-resolution CT scanner.
        Eur Radiol. 2020; 30: 2552-2560
        • Willemink M.J.
        • Persson M.
        • Pourmorteza A.
        • Pelc N.J.
        • Fleischmann D.
        Photon-counting CT: technical principles and clinical prospects.
        Radiology. 2018; 289: 293-312
        • Holmes T.
        • Ulzheimer S.
        • Pourmorteza A.
        Dose-efficient ultra-high-resolution imaging of calcified coronary artery stenoses with photon-counting ct.
        J Cardiovasc Comput Tomogr. 2020; 14: S69
        • Hoffmann U.
        • Ferencik M.
        • Cury R.C.
        • Pena A.J.
        Coronary CT angiography.
        J Nucl Med. 2006; 47: 797-806
        • Symons R.
        • De Bruecker Y.
        • Roosen J.
        • et al.
        Quarter-millimeter spectral coronary stent imaging with photon-counting CT: initial experience.
        J Cardiovasc Comput Tomogr. 2018; 12: 509-515
        • Mannil M.
        • Hickethier T.
        • von Spiczak J.
        • et al.
        Photon-counting CT: high-resolution imaging of coronary stents.
        Invest Radiol. 2018; 53: 143-149
        • Sigovan M.
        • Si-Mohamed S.
        • Bar-Ness D.
        • et al.
        Feasibility of improving vascular imaging in the presence of metallic stents using spectral photon counting CT and K-edge imaging.
        Sci Rep. 2019; 9: 19850
        • Virmani R.
        • Burke A.P.
        • Kolodgie F.D.
        • Farb A.
        Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque.
        J Intervent Cardiol. 2003; 16: 267-272
        • Nerlekar N.
        • Ha F.J.
        • Cheshire C.
        • et al.
        Computed tomographic coronary angiography–derived plaque characteristics predict major adverse cardiovascular events.
        Circulation: Cardiovasc Imag. 2018; 11
        • Arnett D.K.
        • Blumenthal R.S.
        • Albert M.A.
        • et al.
        ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines.
        J Am Coll Cardiol. 2019; 74 (2019): 1376-1414
        • Senoner T.
        • Plank F.
        • Beyer C.
        • et al.
        Does coronary calcium score zero reliably rule out coronary artery disease in low-to-intermediate risk patients? A coronary CTA study.
        J Cardiovasc Comput Tomogr. 2020; 14: 155-161
        • Symons R.
        • Cork T.E.
        • Sahbaee P.
        • et al.
        Low-dose lung cancer screening with photon-counting CT: a feasibility study.
        Phys Med Biol. 2017; 62: 202-213
        • Rajendran K.
        • Tao S.
        • Abdurakhimova D.
        • Leng S.
        • McCollough C.
        Ultra-high resolution photon-counting detector CT reconstruction using spectral prior image constrained compressed-sensing (UHR-SPICCS).
        Proc SPIE-Int Soc Opt Eng. 2018; 10573
        • Harrison A.P.
        • Xu Z.
        • Pourmorteza A.
        • Bluemke D.A.
        • Mollura D.J.
        A multichannel block-matching denoising algorithm for spectral photon-counting CT images.
        Med Phys. 2017; 44: 2447-2452
        • Symons R.
        • Sandfort V.
        • Mallek M.
        • Ulzheimer S.
        • Pourmorteza A.
        Coronary artery calcium scoring with photon-counting CT: first in vivo human experience.
        Int J Cardiovasc Imag. 2019; 35: 733-739
        • Willemink M.J.
        • van der Werf N.R.
        • Nieman K.
        • Greuter M.J.W.
        • Koweek L.M.
        • Fleischmann D.
        Coronary artery calcium: a technical argument for a new scoring method.
        J Cardiovasc Comput Tomogr. 2019; 13: 347-352
        • Willemink M.J.
        • Noël P.B.
        The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence.
        Eur Radiol. 2019; 29: 2185-2195
        • Leng S.
        • Zhou W.
        • Yu Z.
        • et al.
        Spectral performance of a whole-body research photon counting detector CT: quantitative accuracy in derived image sets.
        Phys Med Biol. 2017; 62: 7216-7232
        • Sandfort V.
        • Palanisamy S.
        • Symons R.
        • et al.
        Optimized energy of spectral CT for infarct imaging: experimental validation with human validation.
        J Cardiovasc Comput Tomogr. 2017; 11: 171-178
        • Ohta Y.
        • Kitao S.
        • Yunaga H.
        • et al.
        Myocardial delayed enhancement CT for the evaluation of heart failure: comparison to MRI.
        Radiology. 2018; 288: 682-691
        • Weidman E.K.
        • Plodkowski A.J.
        • Halpenny D.F.
        • et al.
        Dual-energy CT angiography for detection of pulmonary emboli: incremental benefit of iodine maps.
        Radiology. 2018; 289: 546-553
        • Ascenti G.
        • Mazziotti S.
        • Lamberto S.
        • et al.
        Dual-energy CT for detection of endoleaks after endovascular abdominal aneurysm repair: usefulness of colored iodine overlay.
        AJR Am J Roentgenol. 2011; 196: 1408-1414
        • Stolzmann P.
        • Frauenfelder T.
        • Pfammatter T.
        • et al.
        Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT.
        Radiology. 2008; 249: 682-691
        • Martin S.S.
        • Wichmann J.L.
        • Weyer H.
        • et al.
        Endoleaks after endovascular aortic aneurysm repair: improved detection with noise-optimized virtual monoenergetic dual-energy CT.
        Eur J Radiol. 2017; 94: 125-132
        • Dangelmaier J.
        • Bar-Ness D.
        • Daerr H.
        • et al.
        Experimental feasibility of spectral photon-counting computed tomography with two contrast agents for the detection of endoleaks following endovascular aortic repair.
        Eur Radiol. 2018; 28: 3318-3325
        • Grönberg F.
        • Lundberg J.
        • Sjölin M.
        • et al.
        Feasibility of unconstrained three-material decomposition: imaging an excised human heart using a prototype silicon photon-counting CT detector.
        Eur Radiol. 2020; (Published online June 25)
        • Nasirudin R.A.
        • Mei K.
        • Penchev P.
        • et al.
        Reduction of metal artifact in single photon-counting computed tomography by spectral-driven iterative reconstruction technique.
        PLoS One. 2015; 10e0124831
        • Muenzel D.
        • Daerr H.
        • Proksa R.
        • et al.
        Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study.
        Eur Radiol Exp. 2017; 1: 25
        • Yeh B.M.
        • FitzGerald P.F.
        • Edic P.M.
        • et al.
        Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.
        Adv Drug Deliv Rev. 2017; 113: 201-222
        • Hsu J.C.
        • Nieves L.M.
        • Betzer O.
        • et al.
        Nanoparticle contrast agents for X-ray imaging applications.
        WIREs Nanomed Nanobiotechnol. 2020; 12: e1642
        • Kim J.
        • Bar-Ness D.
        • Si-Mohamed S.
        • et al.
        Assessment of candidate elements for development of spectral photon-counting CT specific contrast agents.
        Sci Rep. 2018; 8: 12119
        • Symons R.
        • Cork T.E.
        • Lakshmanan M.N.
        • et al.
        Dual-contrast agent photon-counting computed tomography of the heart: initial experience.
        Int J Cardiovasc Imag. 2017; 33: 1253-1261
        • Riederer I.
        • Bar-Ness D.
        • Kimm M.A.
        • et al.
        Liquid embolic agents in spectral X-ray photon-counting computed tomography using tantalum K-edge imaging.
        Sci Rep. 2019; 9: 5268
        • Lambert J.W.
        • Sun Y.
        • Stillson C.
        • et al.
        An intravascular tantalum oxide–based CT contrast agent: preclinical evaluation emulating overweight and obese patient size.
        Radiology. 2018; 289: 103-110
        • Kee P.H.
        • Danila D.
        CT imaging of myocardial scar burden with CNA35-conjugated gold nanoparticles.
        Nanomedicine. 2018; 14: 1941-1947
        • Chhour P.
        • Naha P.C.
        • O’Neill S.M.
        • et al.
        Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography.
        Biomaterials. 2016; 87: 93-103
        • Cormode D.P.
        • Roessl E.
        • Thran A.
        • et al.
        Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles.
        Radiology. 2010; 256: 774-782
        • Kim J.-Y.
        • Ryu J.H.
        • Schellingerhout D.
        • et al.
        Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles.
        Theranostics. 2015; 5: 1098-1114
        • Kim D.-E.
        • Kim J.-Y.
        • Sun I.-C.
        • et al.
        Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles.
        Ann Neurol. 2013; 73: 617-625