Advertisement

Cardiovascular computed tomography in pediatric congenital heart disease: A state of the art review

  • Jennifer Cohen
    Affiliations
    Department of Pediatrics, Division of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
    Search for articles by this author
  • Priyanka Asrani
    Affiliations
    Division of Pediatric Cardiology, Department of Pediatrics, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
    Search for articles by this author
  • Simon Lee
    Affiliations
    Department of Pediatrics, The Heart Center, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
    Search for articles by this author
  • Donald Frush
    Affiliations
    Division of Pediatric Radiology, Department of Radiology, Medical Physics Graduate Program, Duke University Medical Center, Durham, NC, USA
    Search for articles by this author
  • B. Kelly Han
    Affiliations
    The Children's Heart Clinic at The Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
    Search for articles by this author
  • Anjali Chelliah
    Affiliations
    Division of Pediatric Cardiology, Department of Pediatrics, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA

    Division of Pediatric Cardiology, Goryeb Children's Hospital, Atlantic Health System, Morristown, NJ, USA
    Search for articles by this author
  • Kanwal M. Farooqi
    Correspondence
    Corresponding author. New York Presbyterian/Columbia University Irving Medical Center, Morgan Stanley Children's Hospital, 3959 Broadway, CHN 2, New York, NY 10032, USA.
    Affiliations
    Division of Pediatric Cardiology, Department of Pediatrics, New York Presbyterian/Columbia University Irving Medical Center, New York, NY, USA
    Search for articles by this author

      Abstract

      Cardiac computed tomography (CCT) has increasingly been used in the assessment of both children and adults with congenital heart disease (CHD), in part due to advances in CCT technology and an increased prevalence of adults with palliated CHD. It serves as a complimentary modality to echocardiography, cardiac magnetic resonance imaging and cardiac catheterization. CCT can provide unique diagnostic information, is less invasive and less likely to require sedation compared to other modalities. Detailed knowledge of individual patient cardiac anatomy, physiology, surgical repair and possible residual lesions are paramount to optimal CCT imaging. This comprehensive review details the use of CCT both pre- and postoperatively for the most common CHD diagnoses. We also aim to highlight some new and innovative technologies that have become available and can further optimize CCT imaging for CHD patients.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      Full access to the journal is a member benefit for SCCT Members, Login via the SCCT website to access all journal content.

      Subscribe:

      Subscribe to Journal of Cardiovascular Computed Tomography
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Bouma B.J.
        • Mulder B.J.
        Changing landscape of congenital heart disease.
        Circ Res. 2017; 120: 908-922
        • Prakash A.
        • Powell A.J.
        • Geva T.
        Multimodality noninvasive imaging for assessment of congenital heart disease.
        Circ Cardiovasc Imag. 2010; 3: 112-125
        • Han B.K.
        • Rigsby C.K.
        • Hlavacek A.
        • et al.
        Computed tomography imaging in patients with congenital heart disease Part I: rationale and utility. An expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the society of pediatric radiology (SPR) and the north American society of cardiac imaging (NASCI).
        J Cardiovasc Comput Tomogr. 2015; 9: 475-492
        • Han B.K.
        • Rigsby C.K.
        • Leipsic J.
        • et al.
        Computed tomography imaging in patients with congenital heart disease, Part 2: technical recommendations. An expert consensus document of the society of cardiovascular computed tomography (SCCT): endorsed by the society of pediatric radiology (SPR) and the north American society of cardiac imaging (NASCI).
        J Cardiovasc Comput Tomogr. 2015; 9: 493-513
        • Saengsin K.
        • Pickard S.S.
        • Prakash A.
        Utility of cardiac CT in infants with congenital heart disease: diagnostic performance and impact on management.
        J Cardiovasc Comput Tomogr. 2021; : S1934-5925(21)00479-2.
        • De Oliveira Nunes M.
        • Witt D.R.
        • Casey S.A.
        • et al.
        Radiation exposure of dual-source cardiovascular computed tomography in patients with congenital heart disease.
        JACC Cardiovasc Imaging. 2021; 14: 698-700
        • Booij R.
        • Dijkshoorn M.L.
        • van Straten M.
        • et al.
        Cardiovascular imaging in pediatric patients using dual source CT.
        JACC Cardiovasc Imaging. 2016; 10: 13-21
        • Han B.K.
        • Overman D.M.
        • Grant K.
        • et al.
        Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates.
        JACC Cardiovasc Imaging. 2013; 7: 354-360
        • Jadhav S.P.
        • Golriz F.
        • Atweh L.A.
        • Zhang W.
        • Krishnamurthy R.
        CT angiography of neonates and infants: comparison of radiation dose and image quality of target mode prospectively ECG-gated 320-MDCT and ungated helical 64-MDCT.
        Am J Roentgenol. 2015; 204: W184-W191
        • Amaral J.G.
        • Traubici J.
        • BenDavid G.
        • Reintamm G.
        • Daneman A.
        Safety of power injector use in children as measured by incidence of extravasation.
        Am J Roentgenol. 2006; 187: 580-583
        • Yoshiura T.
        • Masuda T.
        • Matsumoto Y.
        • et al.
        Usefulness of fenestrated catheters for iv contrast infusion cardiac CT angiography for newborn patients during the congenital heart disease.
        Nippon Hoshasen Gijutsu Gakkai Zasshi. 2019; 75: 765-770
        • Park E.-A.
        • Lee W.
        • Chung S.-Y.
        • Yin Y.H.
        • Chung J.W.
        • Park J.H.
        Optimal scan timing and intravenous route for contrast-enhanced computed tomography in patients after Fontan operation.
        J Comput Assist Tomogr. 2010; 34: 75-81
        • Ghadimi Mahani M.
        • Agarwal P.P.
        • Rigsby C.K.
        • et al.
        CT for assessment of thrombosis and pulmonary embolism in multiple stages of single-ventricle palliation: challenges and suggested protocols.
        Radiographics. 2016; 36: 1273-1284
        • Katsura M.
        • Sato J.
        • Akahane M.
        • Kunimatsu A.
        • Abe O.
        Current and novel techniques for metal artifact reduction at CT: practical guide for radiologists.
        Radiographics. 2018; 38: 450-461
        • Xi Y.
        • Jin Y.
        • De Man B.
        • Wang G.
        High-kVp assisted metal artifact reduction for X-ray computed tomography.
        IEEE Access. 2016; 4: 4769-4776
        • Zhang W.
        • Bogale S.
        • Golriz F.
        • Krishnamurthy R.
        Relationship between heart rate and quiescent interval of the cardiac cycle in children using MRI.
        Pediatr Radiol. 2017; 47: 1588-1593
        • Farooqi K.M.
        • Nielsen J.C.
        • Uppu S.C.
        • et al.
        Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning.
        Circ Cardiovasc Imag. 2015; 8
        • Farooqi K.M.
        • Mahmood F.
        Innovations in preoperative planning: insights into another dimension using 3D printing for cardiac disease.
        J Cardiothorac Vasc Anesth. 2018; 32: 1937-1945
        • Farooqi K.M.
        • Cooper C.
        • Chelliah A.
        • et al.
        3D printing and heart failure: the present and the future.
        JACC Heart Fail. 2019; 7: 132-142
        • Biglino G.
        • Moharem-Elgamal S.
        • Lee M.
        • Tulloh R.
        • Caputo M.
        The perception of a three-dimensional-printed heart model from the perspective of different stakeholders: a complex case of truncus arteriosus.
        Front Pediatr. 2017; 5: 209
        • Loke Y.H.
        • Harahsheh A.S.
        • Krieger A.
        • Olivieri L.J.
        Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease.
        BMC Med Educ. 2017; 17: 54
        • Otton J.M.
        • Birbara N.S.
        • Hussain T.
        • Greil G.
        • Foley T.A.
        • Pather N.
        3D printing from cardiovascular CT: a practical guide and review.
        Cardiovasc Diagn Ther. 2017; 7: 507
        • Abudayyeh I.
        • Gordon B.
        • Ansari M.M.
        • Jutzy K.
        • Stoletniy L.
        • Hilliard A.
        A practical guide to cardiovascular 3D printing in clinical practice: overview and examples.
        J Intervent Cardiol. 2018; 31: 375-383
        • Van Praagh R.
        • Van Praagh S.
        Atrial isomerism in the heterotaxy syndromes with asplenia, or polysplenia, or normally formed spleen: an erroneous concept.
        Am J Cardiol. 1990; 66: 1504-1506
        • Hoffman J.I.
        • Kaplan S.
        The incidence of congenital heart disease.
        J Am Coll Cardiol. 2002; 39: 1890-1900
        • Anderson R.H.
        • Weinberg P.M.
        The clinical anatomy of transposition.
        Cardiol Young. 2005; 15: 76-87
        • Wt M.
        • AL C.
        • JD K.
        • RD R.
        A surgical approach to transposition of the great vessels with extracorporeal circuit.
        Surgery. 1954; 36: 31-51
        • Wilson N.J.
        • Clarkson P.M.
        • Barratt-Boyes B.G.
        • et al.
        Long-term outcome after the Mustard repair for simple transposition of the great arteries: 28-year follow-up.
        J Am Coll Cardiol. 1998; 32: 758-765
        • Jatene A.D.
        • Fontes V.F.
        • Paulista P.
        • et al.
        Anatomic correction of transposition of the great vessels.
        J Thorac Cardiovasc Surg. 1976; 72: 364-370
        • Lecompte Y.
        • Zannini L.
        • Hazan E.
        • et al.
        Anatomic correction of transposition of the great arteries: new technique without use of a prosthetic conduit.
        J Thorac Cardiovasc Surg. 1981; 82: 629-631
        • Ou P.
        • Celermajer D.S.
        • Marini D.
        • et al.
        Safety and accuracy of 64-slice computed tomography coronary angiography in children after the arterial switch operation for transposition of the great arteries.
        JACC (J Am Coll Cardiol): Cardiovasc Imaging. 2008; 1: 331-339
        • Szymczyk K.
        • Moll M.
        • Sobczak-Budlewska K.
        • et al.
        Usefulness of routine coronary CT angiography in patients with transposition of the great arteries after an arterial switch operation.
        Pediatr Cardiol. 2018; 39: 335-346
        • Stout K.K.
        • Daniels C.J.
        • Aboulhosn J.A.
        • et al.
        2018 AHA/ACC guideline for the management of adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines.
        J Am Coll Cardiol. 2018;
        • Rastelli G.
        • McGoon D.C.
        • Wallace R.B.
        Anatomic correction of transposition of the great arteries with ventricular septal defect and subpulmonary stenosis.
        J Thorac Cardiovasc Surg. 1969; 58: 545-552
        • Hendriks B.
        • Martens B.
        • Mihl C.
        Pre-procedural computed tomography in transcatheter pulmonary valve replacement: the first steps towards standardization of image quality.
        Int J Cardiol Heart Vasc. 2020; 29
        • Bergersen L.
        • Benson L.N.
        • Gillespie M.J.
        • et al.
        Harmony feasibility trial: acute and short-term outcomes with a self-expanding transcatheter pulmonary valve.
        JACC Cardiovasc Interv. 2017; 10: 1763-1773
        • Liu Y.
        • Chen S.
        • Zuhlke L.
        • et al.
        Global birth prevalence of congenital heart defects 1970-2017: updated systematic review and meta-analysis of 260 studies.
        Int J Epidemiol. 2019; 48: 455-463
        • Mai C.T.
        • Riehle-Colarusso T.
        • O'Halloran A.
        • et al.
        Selected birth defects data from population-based birth defects surveillance programs in the United States, 2005-2009: featuring critical congenital heart defects targeted for pulse oximetry screening.
        Birth Defects Res A Clin Mol Teratol. 2012; 94: 970-983
        • Koppel C.J.
        • Jongbloed M.R.M.
        • Kies P.
        • et al.
        Coronary anomalies in tetralogy of Fallot - a meta-analysis.
        Int J Cardiol. 2020; 306: 78-85
        • Kalfa D.M.
        • Serraf A.E.
        • Ly M.
        • Le Bret E.
        • Roussin R.
        • Belli E.
        Tetralogy of Fallot with an abnormal coronary artery: surgical options and prognostic factors.
        Eur J Cardio Thorac Surg. 2012; 42: e34-e39
        • Goo H.W.
        Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings.
        Int J Cardiovasc Imag. 2018; 34: 1997-2009
        • Vastel-Amzallag C.
        • Le Bret E.
        • Paul J.F.
        • et al.
        Diagnostic accuracy of dual-source multislice computed tomographic analysis for the preoperative detection of coronary artery anomalies in 100 patients with tetralogy of Fallot.
        J Thorac Cardiovasc Surg. 2011; 142: 120-126
        • Rehman R.
        • Marhisham M.C.
        • Alwi M.
        Stenting the complex patent ductus arteriosus in tetralogy of Fallot with pulmonary atresia: challenges and outcomes.
        Future Cardiol. 2018; 14: 55-73
        • Meinel F.G.
        • Huda W.
        • Schoepf U.J.
        • et al.
        Diagnostic accuracy of CT angiography in infants with tetralogy of Fallot with pulmonary atresia and major aortopulmonary collateral arteries.
        J Cardiovasc Comput Tomogr. 2013; 7: 367-375
        • Hayabuchi Y.
        • Inoue M.
        • Watanabe N.
        • et al.
        Assessment of systemic-pulmonary collateral arteries in children with cyanotic congenital heart disease using multidetector-row computed tomography: comparison with conventional angiography.
        Int J Cardiol. 2010; 138: 266-271
        • Jia Q.
        • Cen J.
        • Li J.
        • et al.
        Anatomy of the retro-oesophageal major aortopulmonary collateral arteries in patients with pulmonary atresia with ventricular septal defect: results from preoperative CTA.
        Eur Radiol. 2018; 28: 3066-3074
        • Lloyd D.F.A.
        • Goreczny S.
        • Austin C.
        • et al.
        Catheter, MRI and CT imaging in newborns with pulmonary atresia with ventricular septal defect and aortopulmonary collaterals: quantifying the risks of radiation dose and anaesthetic time.
        Pediatr Cardiol. 2018; 39: 1308-1314
        • Sun H.Y.
        • Boe J.
        • Rubesova E.
        • Barth R.A.
        • Tacy T.A.
        Fetal MRI correlates with postnatal CT angiogram assessment of pulmonary anatomy in tetralogy of F allot with absent pulmonary valve.
        Congenit Heart Dis. 2014; 9: E105-E109
        • Verma M.
        • Pandey N.N.
        • Ojha V.
        • et al.
        Evaluation of cardiovascular morphology and airway-related abnormalities in tetralogy of fallot with absent pulmonary valve syndrome on multidetector computed tomography angiography.
        J Card Surg. 2021; 36: 2697-2704
        • Yamasaki Y.
        • Nagao M.
        • Yamamura K.
        • et al.
        Quantitative assessment of right ventricular function and pulmonary regurgitation in surgically repaired tetralogy of Fallot using 256-slice CT: comparison with 3-Tesla MRI.
        Eur Radiol. 2014; 24: 3289-3299
        • Goo H.W.
        Semiautomatic three-dimensional threshold-based cardiac computed tomography ventricular volumetry in repaired tetralogy of fallot: comparison with cardiac magnetic resonance imaging.
        Korean J Radiol. 2019; 20: 102-113
        • Ellis A.R.
        • Mulvihill D.
        • Bradley S.M.
        • Hlavacek A.M.
        Utility of computed tomographic angiography in the pre-operative planning for initial and repeat congenital cardiovascular surgery.
        Cardiol Young. 2010; 20: 262-268
        • Curran L.
        • Agrawal H.
        • Kallianos K.
        • et al.
        Computed tomography guided sizing for transcatheter pulmonary valve replacement.
        Int J Cardiol Heart Vasc. 2020; 29: 100523
        • Stout K.K.
        • Daniels C.J.
        • Aboulhosn J.A.
        • et al.
        2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines.
        J Am Coll Cardiol. 2019; 73: e81-e192
        • Zablah J.E.
        • Rodriguez S.A.
        • Leahy R.
        • Morgan G.J.
        Novel minimal radiation approach for percutaneous pulmonary valve implantation.
        Pediatr Cardiol. 2021; 42: 926-933
        • Abdelghani M.
        • Nassif M.
        • Blom N.A.
        • et al.
        Infective endocarditis after Melody valve implantation in the pulmonary position: a systematic review.
        J Am Heart Assoc. 2018; 7
        • Han B.K.
        • Moga F.X.
        • Overman D.
        • Carter C.
        • Lesser J.R.
        Diagnostic value of contrast-enhanced multiphase computed tomography for assessment of percutaneous pulmonary valve obstruction.
        Ann Thorac Surg. 2016; 101: e115-e116
        • Fontan F.
        • Baudet E.
        Surgical repair of tricuspid atresia.
        Thorax. 1971; 26: 240-248
        • Farooqi K.M.
        • Uppu S.C.
        • Nguyen K.
        • et al.
        Application of virtual three-dimensional models for simultaneous visualization of intracardiac anatomic relationships in double outlet right ventricle.
        Pediatr Cardiol. 2016; 37: 90-98
        • Dillman J.R.
        • Yarram S.G.
        • Hernandez R.J.
        Imaging of pulmonary venous developmental anomalies.
        Am J Roentgenol. 2009; 192: 1272-1285
        • JM C.
        • RC D.
        • WB R.
        Total pulmonary venous drainage into the right side of the heart; report of 17 autopsied cases not associated with other major cardiovascular anomalies.
        Lab Invest. 1957; 6: 44-64
        • Karamlou T.
        • Gurofsky R.
        • Al Sukhni E.
        • et al.
        Factors associated with mortality and reoperation in 377 children with total anomalous pulmonary venous connection.
        Circulation. 2007; 115: 1591-1598
        • Aluja Jaramillo F.
        • Hernandez C.
        • Garzon J.P.
        • Sanchez Herrera A.P.
        • Velasco Morales M.L.
        Infracardiac type total anomalous pulmonary venous return with obstruction and dilatation of portal vein.
        Radiol Case Rep. 2017; 12: 229-232
        • Attenhofer Jost C.H.
        • Connolly H.M.
        • Danielson G.K.
        • et al.
        Sinus venosus atrial septal defect: long-term postoperative outcome for 115 patients.
        Circulation. 2005; 112: 1953-1958
        • Vida V.L.
        • Padalino M.A.
        • Boccuzzo G.
        • et al.
        Scimitar syndrome: a European congenital heart surgeons association (ECHSA) multicentric study.
        Circulation. 2010; 122: 1159-1166
        • DiLorenzo M.P.
        • Santo A.
        • Rome J.J.
        • et al.
        Pulmonary vein stenosis: outcomes in children with congenital heart disease and prematurity.
        Semin Thorac Cardiovasc Surg. 2019; 31: 266-273
        • Drossner D.M.
        • Kim D.W.
        • Maher K.O.
        • Mahle W.T.
        Pulmonary vein stenosis: prematurity and associated conditions.
        Pediatrics. 2008; 122: e656-e661
        • Latson L.A.
        • Prieto L.R.
        Congenital and acquired pulmonary vein stenosis.
        Circulation. 2007; 115: 103-108
        • Lyen S.
        • Wijesuriya S.
        • Ngan-Soo E.
        • et al.
        Anomalous pulmonary venous drainage: a pictorial essay with a CT focus.
        Congenit Heart Dis. 2017; 1
        • Thai W-e
        • Wai B.
        • Lin K.
        • et al.
        Pulmonary venous anatomy imaging with low-dose, prospectively ECG-triggered, high-pitch 128-slice dual-source computed tomography.
        Circulation: Arrhythm Electrophysiol. 2012; 5: 521-530
        • Hassani C.
        • Saremi F.
        Comprehensive cross-sectional imaging of the pulmonary veins.
        Radiographics. 2017; 37: 1928-1954
        • Seale A.N.
        • Uemura H.
        • Webber S.A.
        • et al.
        Total anomalous pulmonary venous connection: morphology and outcome from an international population-based study.
        Circulation. 2010; 122: 2718-2726
        • Prompona M.
        • Muehling O.
        • Naebauer M.
        • Schoenberg S.O.
        • Reiser M.
        • Huber A.
        MRI for detection of anomalous pulmonary venous drainage in patients with sinus venosus atrial septal defects.
        Int J Cardiovasc Imag. 2011; 27: 403-412
        • Prakash A.
        • Khan M.A.
        • Hardy R.
        • Torres A.J.
        • Chen J.M.
        • Gersony W.M.
        A new diagnostic algorithm for assessment of patients with single ventricle before a Fontan operation.
        J Thorac Cardiovasc Surg. 2009; 138: 917-923
        • Han B.K.
        • Huntley M.
        • Overman D.
        • et al.
        Cardiovascular CT for evaluation of single-ventricle heart disease: risks and accuracy compared with interventional findings.
        Cardiol Young. 2018; 28: 9-20
        • Fogel M.A.
        • Pawlowski T.W.
        • Whitehead K.K.
        • et al.
        Cardiac magnetic resonance and the need for routine cardiac catheterization in single ventricle patients prior to Fontan: a comparison of 3 groups: pre-Fontan CMR versus cath evaluation.
        J Am Coll Cardiol. 2012; 60: 1094-1102
        • Brown D.W.
        • Gauvreau K.
        • Powell A.J.
        • et al.
        Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional Glenn anastomosis: long-term follow-up of a prospective randomized trial.
        J Thorac Cardiovasc Surg. 2013; 146: 1172-1178
        • Ramamoorthy C.
        • Haberkern C.M.
        • Bhananker S.M.
        • et al.
        Anesthesia-related cardiac arrest in children with heart disease: data from the Pediatric Perioperative Cardiac Arrest (POCA) registry.
        Anesth Analg. 2010; 110: 1376-1382
        • Rychik J.
        • Atz A.M.
        • Celermajer D.S.
        • et al.
        Evaluation and management of the child and adult with Fontan circulation: a scientific statement from the American Heart Association.
        Circulation. 2019; 140: e234-e284
        • Han B.K.
        • Vezmar M.
        • Lesser J.R.
        • et al.
        Selective use of cardiac computed tomography angiography: an alternative diagnostic modality before second-stage single ventricle palliation.
        J Thorac Cardiovasc Surg. 2014; 148: 1548-1554
        • Mandalenakis Z.
        • Karazisi C.
        • Skoglund K.
        • et al.
        Risk of cancer among children and young adults with congenital heart disease compared with healthy controls.
        JAMA Netw Open. 2019; 2 (e196762-e)
        • Mitchell S.
        • Korones S.
        • Berendes H.
        Congenital heart disease in 56,109 births incidence and natural history.
        Circulation. 1971; 43: 323-332
        • Ferencz C.
        • Rubin J.D.
        • McCarter R.J.
        • et al.
        Cardiac and noncardiac malformations: observations in a population-based study.
        Teratology. 1987; 35: 367-378
        • Koşucu P.
        • Koşucu M.
        • Dinç H.
        • Korkmaz L.
        Interrupted aortic arch in a adult: diagnosis with MSCT.
        Int J Cardiovasc Imag. 2006; 22: 735-739
        • Yang D.H.
        • Goo H.W.
        • Seo D.-M.
        • et al.
        Multislice CT angiography of interrupted aortic arch.
        Pediatr Radiol. 2008; 38: 89-100
        • von Kodolitsch Y.
        • Aydin M.A.
        • Koschyk D.H.
        • et al.
        Predictors of aneurysmal formation after surgical correction of aortic coarctation.
        J Am Coll Cardiol. 2002; 39: 617-624
        • Budoff M.J.
        • Shittu A.
        • Roy S.
        Elsevier, 2013
        • Sachdeva R.
        • Valente A.M.
        • Armstrong A.K.
        • et al.
        ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 appropriate use criteria for multimodality imaging during the follow-up care of patients with congenital heart disease: a report of the American College of cardiology solution set oversight committee and appropriate use criteria task force, American heart association, American society of echocardiography, heart rhythm society, international society for adult congenital heart disease, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance, and society of pediatric echocardiography.
        J Am Coll Cardiol. 2020; 75: 657-703
        • Etesami M.
        • Ashwath R.
        • Kanne J.
        • Gilkeson R.
        • Rajiah P.
        Computed tomography in the evaluation of vascular rings and slings.
        Insights into imaging. 2014; 5: 507-521
        • Backer C.L.
        • Mongé M.C.
        • Popescu A.R.
        • Eltayeb O.M.
        • Rastatter J.C.
        • Rigsby C.K.
        Seminars in Pediatric Surgery.
        Elsevier, 2016: 165-175
        • Maron B.J.
        • Doerer J.J.
        • Haas T.S.
        • Tierney D.M.
        • Mueller F.O.
        Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006.
        Circulation. 2009; 119: 1085-1092
        • Maron B.J.
        Sudden death in young athletes.
        N Engl J Med. 2003; 349: 1064-1075
        • Harmon K.G.
        • Drezner J.A.
        • Wilson M.G.
        • Sharma S.
        Incidence of sudden cardiac death in athletes: a state-of-the-art review.
        Br J Sports Med. 2014; 48: 1185-1192
        • Brothers J.A.
        • Frommelt M.A.
        • Jaquiss R.D.B.
        • Myerburg R.J.
        • Fraser Jr., C.D.
        • Tweddell J.S.
        Expert consensus guidelines: anomalous aortic origin of a coronary artery.
        J Thorac Cardiovasc Surg. 2017; 153: 1440-1457
        • Lee S.
        • Uppu S.C.
        • Lytrivi I.D.
        • et al.
        Utility of multimodality imaging in the morphologic characterization of anomalous aortic origin of a coronary artery.
        World J Pediatr Congenit Heart Surg. 2016; 7: 308-317
        • Agrawal H.
        • Mery C.M.
        • Krishnamurthy R.
        • Molossi S.
        Anatomic types of anomalous aortic origin of a coronary artery: a pictorial summary.
        Congenit Heart Dis. 2017; 12: 603-606
        • Krishnamurthy R.
        • Masand P.M.
        • Jadhav S.P.
        • et al.
        Accuracy of computed tomography angiography and structured reporting of high-risk morphology in anomalous aortic origin of coronary artery: comparison with surgery.
        Pediatr Radiol. 2021; 51: 1299-1310
        • Farooqi K.M.
        • Nees S.N.
        • Smerling J.
        • et al.
        Assessment of anomalous coronary arteries by imagers and surgeons: comparison of imaging modalities.
        Ann Thorac Surg. 2021; 111: 672-681
        • Molossi S.
        • Agrawal H.
        • Mery C.M.
        • et al.
        Outcomes in anomalous aortic origin of a coronary artery following a prospective standardized approach.
        Circ Cardiovasc Interv. 2020; 13e008445
        • Jegatheeswaran A.
        • Devlin P.J.
        • Williams W.G.
        • et al.
        Outcomes after anomalous aortic origin of a coronary artery repair: a Congenital Heart Surgeons' Society Study.
        J Thorac Cardiovasc Surg. 2020; 160: 757-771 e5
        • Adebo D.A.
        • Schoeneberg L.
        Dual-source and prospective gated low dose neonatal cardiac computed tomography in evaluation of congenital heart disease.
        Prog Pediatr Cardiol. 2021; : 101447
        • Han B.K.
        • Lindberg J.
        • Overman D.
        • Schwartz R.S.
        • Grant K.
        • Lesser J.R.
        Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population.
        JACC Cardiovasc Imaging. 2012; 6: 252-259
        • Yamasaki Y.
        • Kamitani T.
        • Sagiyama K.
        • Matsuura Y.
        • Hida T.
        • Nagata H.
        Model-based iterative reconstruction for 320-detector row CT angiography reduces radiation exposure in infants with complex congenital heart disease.
        Diagn Interventional Radiol. 2021; 27: 42
        • Willemink M.J.
        • Persson M.
        • Pourmorteza A.
        • Pelc N.J.
        • Fleischmann D.
        Photon-counting CT: technical principles and clinical prospects.
        Radiology. 2018; 289: 293-312
        • Latina J.
        • Shabani M.
        • Kapoor K.
        • et al.
        Ultra-high-resolution coronary CT angiography for assessment of patients with severe coronary artery calcification: initial experience.
        Radiology: Cardiovasc Imaging. 2021; 3e210053
        • Oostveen L.J.
        • Boedeker K.L.
        • Brink M.
        • Prokop M.
        • de Lange F.
        • Sechopoulos I.
        Physical evaluation of an ultra-high-resolution CT scanner.
        Eur Radiol. 2020; : 1-9
        • Hermsen J.L.
        • Roldan-Alzate A.
        • Anagnostopoulos P.V.
        Three-dimensional printing in congenital heart disease.
        J Thorac Dis. 2020; 12: 1194
        • Chaowu Y.
        • Hua L.
        • Xin S.
        Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model.
        Circulation. 2016; 133: e608-e610
        • Taylor C.A.
        • Fonte T.A.
        • Min J.K.
        Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis.
        J Am Coll Cardiol. 2013; 61: 2233-2241
        • Pennati G.
        • Corsini C.
        • Hsia T.-Y.
        • Migliavacca F.
        Computational fluid dynamics models and congenital heart diseases.
        Frontiers in pediatrics. 2013; 1: 4
        • Vach M.
        • Vogelhuber J.
        • Weber M.
        • et al.
        Feasibility of CT-derived myocardial strain measurement in patients with advanced cardiac valve disease.
        Sci Rep. 2021; 11: 1-10
        • Xiong G.
        • Kola D.
        • Heo R.
        • Elmore K.
        • Cho I.
        • Min J.K.
        Myocardial perfusion analysis in cardiac computed tomography angiographic images at rest.
        Med Image Anal. 2015; 24: 77-89
        • Slart R.H.
        • Williams M.C.
        • Juarez-Orozco L.E.
        • et al.
        Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT.
        Eur J Nucl Med Mol Imag. 2021; 48: 1399-1413
        • Nicol E.D.
        • Norgaard B.L.
        • Blanke P.
        • et al.
        The future of cardiovascular computed tomography: advanced analytics and clinical insights.
        JACC (J Am Coll Cardiol): Cardiovasc Imaging. 2019; 12: 1058-1072
        • Meyer Z.
        • Fischer M.
        • Koerfer J.
        • et al.
        The role of FDG-PET-CT in pediatric cardiac patients and patients with congenital heart defects.
        Int J Cardiol. 2016; 220: 656-660
        • Theocharis P.
        • Wong J.
        • Pushparajah K.
        • et al.
        Multimodality cardiac evaluation in children and young adults with multisystem inflammation associated with COVID-19.
        Eur Heart J Cardiovasc Imaging. 2021; 22: 896-903