Advertisement

Great debates in cardiac computed tomography: OPINION: “Artificial intelligence is key to the future of CCTA – The great hope”

      Coronary computed tomography angiography (CCTA) is now well-established in clinical practice for the evaluation of coronary artery disease (CAD) and it has high-level recommendations across multiple international guidelines.
      • Writing Committee Members
      • Gulati M.
      • Levy P.D.
      • et al.
      2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest Pain: a report of the American College of cardiology/American Heart association joint committee on clinical practice guidelines.
      ,
      • Knuuti J.
      • Wijns W.
      • Saraste A.
      • et al.
      2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes.
      Beyond the assessment of stenosis, CCTA can be used to quantify plaque burden, identify high-risk plaque features, and predict functional ischemia - all of which contribute to a comprehensive assessment with valuable diagnostic and prognostic information at every stage of the disease.
      • Abdelrahman K.M.
      • Chen M.Y.
      • Dey A.K.
      • et al.
      Coronary computed tomography angiography from clinical uses to emerging technologies: JACC state-of-the-art review.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      Full access to the journal is a member benefit for SCCT Members, Login via the SCCT website to access all journal content.

      Subscribe:

      Subscribe to Journal of Cardiovascular Computed Tomography
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Writing Committee Members
        • Gulati M.
        • Levy P.D.
        • et al.
        2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR guideline for the evaluation and diagnosis of chest Pain: a report of the American College of cardiology/American Heart association joint committee on clinical practice guidelines.
        J Cardiovasc Comput Tomogr. 2022; 16: 54-122
        • Knuuti J.
        • Wijns W.
        • Saraste A.
        • et al.
        2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes.
        Eur Heart J. 2020; 41: 407-477
        • Abdelrahman K.M.
        • Chen M.Y.
        • Dey A.K.
        • et al.
        Coronary computed tomography angiography from clinical uses to emerging technologies: JACC state-of-the-art review.
        J Am Coll Cardiol. 2020; 76: 1226-1243
        • Dey D.
        • Slomka P.J.
        • Leeson P.
        • et al.
        Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review.
        J Am Coll Cardiol. 2019; 73: 1317-1335
        • Lin A.
        • Kolossvary M.
        • Motwani M.
        • et al.
        Artificial intelligence in cardiovascular CT: current status and future implications.
        J Cardiovasc Comput Tomogr. 2021; 15: 462-469
        • Nicol E.D.
        • Norgaard B.L.
        • Blanke P.
        • et al.
        The future of cardiovascular computed tomography: advanced analytics and clinical insights.
        JACC Cardiovasc Imaging. 2019; 12: 1058-1072
        • Langlotz C.P.
        Will artificial intelligence replace radiologists?.
        Radiol Artif Intell. 2019; 1e190058
        • Banks M.A.
        Sizing up big data.
        Nat Med. 2020; 26: 5-6
        • Choi A.D.
        • Parwani P.
        • Michos E.D.
        • et al.
        The global social media response to the 14th annual Society of Cardiovascular Computed Tomography scientific sessions.
        J Cardiovasc Comput Tomogr. 2020; 14: 124-130
        • Poon M.
        • Lesser J.R.
        • Biga C.
        • et al.
        Current evidence and recommendations for coronary CTA first in evaluation of stable coronary artery disease.
        J Am Coll Cardiol. 2020; 76: 1358-1362
        • Choi A.D.
        • Blankstein R.
        Becoming an expert practitioner: the lifelong journey of education in cardiovascular imaging.
        JACC Cardiovasc Imaging. 2021; 14: 1594-1597
        • Nicol E.P.S.
        • Roditi G.
        • Roobottom C.
        British Society of Cardiovascular Imaging/British Society of Cardiovascular Computed Tomography. The challenge of national CT coronary angiography (CTCA) provision in response to NICE CG95 update 2016.
        • Wolterink J.M.
        • Leiner T.
        • Viergever M.A.
        • Isgum I.
        Generative adversarial networks for noise reduction in low-dose CT.
        IEEE Trans Med Imag. 2017; 36: 2536-2545
        • Kang E.
        • Koo H.J.
        • Yang D.H.
        • Seo J.B.
        • Ye J.C.
        Cycle-consistent adversarial denoising network for multiphase coronary CT angiography.
        Med Phys. 2019; 46: 550-562
        • Lossau Nee Elss T.
        • Nickisch H.
        • Wissel T.
        • et al.
        Motion estimation and correction in cardiac CT angiography images using convolutional neural networks.
        Comput Med Imag Graph. 2019; 76101640
        • Wolterink J.M.
        • van Hamersvelt R.W.
        • Viergever M.A.
        • Leiner T.
        • Isgum I.
        Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
        Med Image Anal. 2019; 51: 46-60
        • Lu M.T.
        • Meyersohn N.M.
        • Mayrhofer T.
        • et al.
        Central core laboratory versus site interpretation of coronary CT angiography: agreement and association with cardiovascular events in the PROMISE trial.
        Radiology. 2018; 287: 87-95
        • Williamson E.
        Commitment to education.
        J Cardiovasc Comput Tomogr. 2021; 15: 383
        • Chow B.J.W.
        • Yam Y.
        • Alenazy A.
        • et al.
        Are training programs ready for the rapid adoption of CCTA?: CBME in CCTA.
        JACC Cardiovasc Imaging. 2021; 14: 1584-1593
        • Kelm B.M.
        • Mittal S.
        • Zheng Y.
        • et al.
        Detection, grading and classification of coronary stenoses in computed tomography angiography.
        Med Image Comput Comput Assist Interv. 2011; 14: 25-32
        • Hong Y.
        • Commandeur F.
        • Cadet S.
        • et al.
        Deep learning-based stenosis quantification from coronary CT Angiography.
        Proc SPIE-Int Soc Opt Eng. 2019; 10949
        • Choi A.D.
        • Marques H.
        • Kumar V.
        • et al.
        CT evaluation by artificial intelligence for atherosclerosis, stenosis and vascular morphology (CLARIFY): a multi-center, international study.
        J Cardiovasc Comput Tomogr. 2021; 15: 470-476
        • Williams M.C.
        • Kwiecinski J.
        • Doris M.
        • et al.
        Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the multicenter SCOT-HEART trial (Scottish computed tomography of the HEART).
        Circulation. 2020; 141: 1452-1462
        • Chang H.J.
        • Lin F.Y.
        • Lee S.E.
        • et al.
        Coronary atherosclerotic precursors of acute coronary syndromes.
        J Am Coll Cardiol. 2018; 71: 2511-2522
        • Coenen A.
        • Kim Y.H.
        • Kruk M.
        • et al.
        Diagnostic accuracy of a machine-learning approach to coronary computed tomographic angiography-based fractional flow reserve: result from the MACHINE consortium.
        Circ Cardiovasc Imaging. 2018; 11e007217
        • Dey D.
        • Gaur S.
        • Ovrehus K.A.
        • et al.
        Integrated prediction of lesion-specific ischaemia from quantitative coronary CT angiography using machine learning: a multicentre study.
        Eur Radiol. 2018; 28: 2655-2664
        • Griffin W.F.
        • Choi A.D.
        • Riess J.S.
        • et al.
        AI evaluation of stenosis on coronary CT angiography, comparison with quantitative coronary angiography and fractional flow reserve: a CREDENCE trial substudy.
        JACC Cardiovasc Imaging. 2022 Feb 15; (S1936-878X(22)00001-8. In press)https://doi.org/10.1016/j.jcmg.2021.10.020
        • Lin A.
        • Manral N.
        • McElhinney P.
        • et al.
        Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study.
        Lancet Digit Health. 2022; 4: e256-e265
        • Kolossvary M.
        • Karady J.
        • Szilveszter B.
        • et al.
        Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign.
        Circ Cardiovasc Imaging. 2017; 10
        • U.S. Food and Drug Administration
        Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices.
        2021