Abstract
Keywords
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessSubscribe:
Subscribe to Journal of Cardiovascular Computed TomographyReferences
- Advanced atherosclerosis imaging by CT: radiomics, machine learning and deep learning.J Cardiovasc Comput Tomogr. 2019 Sep-Oct; 13 (Epub 2019 Apr 21. PMID: 31029649): 274-280https://doi.org/10.1016/j.jcct.2019.04.007
Rose K, Eldridge S, Chapin L. The internet of things: an overview. Understanding the Issues and Challenges of a More Connected World 2015 The Internet Society (ISOC). Available at: https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf accessed 29 March 2022.
- The history of artificial intelligence.Harvard University, Science in the News, 2017 (Available at:)https://sitn.hms.harvard.edu/flash/2017/history-artificial-intelligence/Date accessed: March 29, 2022
Sister article - Choi et al, JCCT 2022.
- Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy.BMJ. 2021; 374 (Available at:): n1872https://doi.org/10.1136/bmj.n187https://www.bmj.com/content/374/bmj.n1872Date accessed: March 29, 2022
- Wicked problems and clumsy solutions: the role of leadership.The New Public Leadership Challenge. December 2010; (ISBN: 978-0-230-27795-3): 169-186https://doi.org/10.1057/9780230277953_11https://www.researchgate.net/publication/304637234_Wicked_Problems_and_Clumsy_Solutions_The_Role_of_LeadershipDate accessed: March 29, 2022
- Why Has Economic Growth Slowed when Innovation Appears to Be Accelerating?.National Bureau of Economic Research, 2018https://doi.org/10.3386/w24554 (Available at:)http://www.nber.org/papers/w24554Date accessed: March 29, 2022
- State-of-the-Art deep learning in cardiovascular image analysis.JACC Cardiovasc Imaging. 2019 Aug; 12: 1549-1565https://doi.org/10.1016/j.jcmg.2019.06.009.PMID:31395244
- Artificial intelligence in cardiovascular CT: current status and future implications.J Cardiovasc Comput Tomogr. 2021; 15: 462-469https://doi.org/10.1016/j.jcct.2021.03.006
- Single reading with computer-aided detection for screening mammography.N Engl J Med. 2008 Oct 16; 359 (PMID: 18832239): 1675-1684https://doi.org/10.1056/NEJMoa0803545
- Diagnostic accuracy of digital screening mammography with and without computer-aided detection.JAMA Intern Med. 2015 Nov; 175 (PMID: 26414882; PMCID: PMC4836172): 1828-1837https://doi.org/10.1001/jamainternmed.2015.5231
- Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy.BMJ. 2021 Sep 1; (PMID: 34470740; PMCID: PMC8409323): 374https://doi.org/10.1136/bmj.n1872
- For watson, solving cancer wasn't so elementary: prospects for artificial intelligence in radiology.Acad Radiol. 2022 Feb; 29 (Epub 2021 Dec 18. PMID: 34933804): 312-314https://doi.org/10.1016/j.acra.2021.11.019
- Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans.Nat Mach Intell. 2021; 3: 199-217https://doi.org/10.1038/s42256-021-00307-0
- CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning.JACC Cardiovasc Imaging. 2021 Mar; 14 (PMID: 33248965): 629-641https://doi.org/10.1016/j.jcmg.2020.08.025
- A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography.Eur Heart J. 2019 Nov 14; 40 (PMID: 31504423; PMCID: PMC6855141): 3529-3543https://doi.org/10.1093/eurheartj/ehz592
- Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths.JACC Cardiovasc Imaging. 2021 Mar; 14 (Epub 2020 Oct 28. PMID: 33129741; PMCID: PMC7987201): 615-625https://doi.org/10.1016/j.jcmg.2020.08.024
- Generative adversarial networks for noise reduction in low-dose CT.IEEE Trans Med Imag. 2017; 36: 2536-2545
- Cycle-consistent adversarial denoising network for multiphase coronary CT angiography.Med Phys. 2019; 46: 550-562
- Motion estimation and correction in cardiac CT angiography images using convolutional neural networks.Comput Med Imag Graph. 2019; 76101640
- First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography.Radiography. 2017; 23 (ISSN 1078-8174): 77-79https://doi.org/10.1016/j.radi.2016.08.003
- Will Robots Really Steal Our Jobs? an International Analysis of the Potential Long Term Impact of Automation PwC. 2018 (PWC Report)https://www.pwc.co.uk/economic-services/assets/international-impact-of-automation-feb-2018.pdfDate accessed: March 29, 2022
- Rise of robot radiologists.Nature. 2019 Dec; 576 (PMID: 31853073): S54-S58https://doi.org/10.1038/d41586-019-03847-z
Banerjee I, Bhimireddy AR, Burns J, et al. Reading Race: AI Recognizes Patient's Racial Identity in Medical Images. https://doi.org/10.48550/arXiv.2107.10356 Accessed 29 Mar 2022.
- Quality and equitable Health care gaps for women: attributions to sex differences in cardiovascular medicine.J Am Coll Cardiol. 2017 Jul 18; 70 (PMID: 28705320): 373-388https://doi.org/10.1016/j.jacc.2017.05.051
- Ethics of artificial intelligence in radiology: summary of the joint European and north American multisociety statement.Radiology. 2019 Nov; 293 (Epub 2019 Oct 1. PMID: 31573399): 436-440https://doi.org/10.1148/radiol.2019191586
- State of AI report.(Available at:)https://docs.google.com/presentation/d/1bwJDRC777rAf00Drthi9yT2c9b0MabWO5ZlksfvFzx8/edit#slide=id.gf171287819_0_165(Accessed)Date: 2021Date accessed: March 29, 2022
- Nature. 2020 Oct; 586 (PMID: 33057217; PMCID: PMC8144864): E14-E16https://doi.org/10.1038/s41586-020-2766-y
- International evaluation of an AI system for breast cancer screening.Nature. 2020 Jan; 577 (Epub 2020 Jan 1. Erratum in: Nature. 2020 Oct;586(7829):E19. PMID: 31894144): 89-94https://doi.org/10.1038/s41586-019-1799-6
- Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review.BMC Med Res Methodol. 2022 Jan 13; 22 (PMID: 35026997; PMCID: PMC8759172): 12https://doi.org/10.1186/s12874-021-01469-6