Advertisement

Great debates in cardiac computed tomography: OPINION: “Artificial intelligence and the future of cardiovascular CT – Managing expectation and challenging hype”

      Abstract

      This manuscript has been written as a follow-up to the “AI/ML great debate” featured at the 2021 Society of Cardiovascular Computed Tomography (SCCT) Annual Scientific Meeting. In debate style, we highlighti the need for expectation management of AI/ML, debunking the hype around current AI techniques, and countering the argument that in its current day format AI/ML is the “silver bullet” for the interpretation of daily clinical CCTA practice.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      Full access to the journal is a member benefit for SCCT Members, Login via the SCCT website to access all journal content.

      Subscribe:

      Subscribe to Journal of Cardiovascular Computed Tomography
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kolossváry M.
        • De Cecco C.N.
        • Feuchtner G.
        • Maurovich-Horvat P.
        Advanced atherosclerosis imaging by CT: radiomics, machine learning and deep learning.
        J Cardiovasc Comput Tomogr. 2019 Sep-Oct; 13 (Epub 2019 Apr 21. PMID: 31029649): 274-280https://doi.org/10.1016/j.jcct.2019.04.007
      1. Rose K, Eldridge S, Chapin L. The internet of things: an overview. Understanding the Issues and Challenges of a More Connected World 2015 The Internet Society (ISOC). Available at: https://www.internetsociety.org/wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf accessed 29 March 2022.

        • Anyoha R.
        The history of artificial intelligence.
        Harvard University, Science in the News, 2017 (Available at:)
      2. Sister article - Choi et al, JCCT 2022.

        • Freeman K.
        • Geppert J.
        • Stinton C.
        • et al.
        Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy.
        BMJ. 2021; 374 (Available at:): n1872https://doi.org/10.1136/bmj.n187
        https://www.bmj.com/content/374/bmj.n1872
        Date accessed: March 29, 2022
        • Brookes S.
        • Grint K.
        Wicked problems and clumsy solutions: the role of leadership.
        The New Public Leadership Challenge. December 2010; (ISBN: 978-0-230-27795-3): 169-186https://doi.org/10.1057/9780230277953_11
        • Gordon R.J.
        Why Has Economic Growth Slowed when Innovation Appears to Be Accelerating?.
        National Bureau of Economic Research, 2018https://doi.org/10.3386/w24554 (Available at:)
        http://www.nber.org/papers/w24554
        Date accessed: March 29, 2022
        • Litjens G.
        • Ciompi F.
        • Wolterink J.M.
        • et al.
        State-of-the-Art deep learning in cardiovascular image analysis.
        JACC Cardiovasc Imaging. 2019 Aug; 12: 1549-1565https://doi.org/10.1016/j.jcmg.2019.06.009.PMID:31395244
        • Lin A.
        • Kolossváry M.
        • Motwani M.
        • et al.
        Artificial intelligence in cardiovascular CT: current status and future implications.
        J Cardiovasc Comput Tomogr. 2021; 15: 462-469https://doi.org/10.1016/j.jcct.2021.03.006
        • Gilbert F.J.
        • Astley S.M.
        • Gillan M.G.
        • et al.
        Single reading with computer-aided detection for screening mammography.
        N Engl J Med. 2008 Oct 16; 359 (PMID: 18832239): 1675-1684https://doi.org/10.1056/NEJMoa0803545
        • Lehman C.D.
        • Wellman R.D.
        • Buist D.S.
        • Kerlikowske K.
        • Tosteson A.N.
        • Miglioretti D.L.
        • Breast Cancer Surveillance Consortium
        Diagnostic accuracy of digital screening mammography with and without computer-aided detection.
        JAMA Intern Med. 2015 Nov; 175 (PMID: 26414882; PMCID: PMC4836172): 1828-1837https://doi.org/10.1001/jamainternmed.2015.5231
        • Freeman K.
        • Geppert J.
        • Stinton C.
        • et al.
        Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy.
        BMJ. 2021 Sep 1; (PMID: 34470740; PMCID: PMC8409323): 374https://doi.org/10.1136/bmj.n1872
        • Thamba A.
        • Gunderman R.B.
        For watson, solving cancer wasn't so elementary: prospects for artificial intelligence in radiology.
        Acad Radiol. 2022 Feb; 29 (Epub 2021 Dec 18. PMID: 34933804): 312-314https://doi.org/10.1016/j.acra.2021.11.019
        • Roberts M.
        • Driggs D.
        • Thorpe M.
        • et al.
        Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans.
        Nat Mach Intell. 2021; 3: 199-217https://doi.org/10.1038/s42256-021-00307-0
        • Yang S.
        • Koo B.K.
        • Hoshino M.
        • et al.
        CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning.
        JACC Cardiovasc Imaging. 2021 Mar; 14 (PMID: 33248965): 629-641https://doi.org/10.1016/j.jcmg.2020.08.025
        • Oikonomou E.K.
        • Williams M.C.
        • Kotanidis C.P.
        • et al.
        A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography.
        Eur Heart J. 2019 Nov 14; 40 (PMID: 31504423; PMCID: PMC6855141): 3529-3543https://doi.org/10.1093/eurheartj/ehz592
        • Nakanishi R.
        • Slomka P.J.
        • Rios R.
        • et al.
        Machine learning adds to clinical and CAC assessments in predicting 10-year CHD and CVD deaths.
        JACC Cardiovasc Imaging. 2021 Mar; 14 (Epub 2020 Oct 28. PMID: 33129741; PMCID: PMC7987201): 615-625https://doi.org/10.1016/j.jcmg.2020.08.024
        • Wolterink J.M.
        • Leiner T.
        • Viergever M.A.
        • Isgum I.
        Generative adversarial networks for noise reduction in low-dose CT.
        IEEE Trans Med Imag. 2017; 36: 2536-2545
        • Kang E.
        • Koo H.J.
        • Yang D.H.
        • Seo J.B.
        • Ye J.C.
        Cycle-consistent adversarial denoising network for multiphase coronary CT angiography.
        Med Phys. 2019; 46: 550-562
        • Lossau Nee Elss T.
        • Nickisch H.
        • Wissel T.
        • et al.
        Motion estimation and correction in cardiac CT angiography images using convolutional neural networks.
        Comput Med Imag Graph. 2019; 76101640
        • Precht H.
        • Kitslaar P.H.
        • Broersen A.
        • et al
        First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography.
        Radiography. 2017; 23 (ISSN 1078-8174): 77-79https://doi.org/10.1016/j.radi.2016.08.003
      3. Will Robots Really Steal Our Jobs? an International Analysis of the Potential Long Term Impact of Automation PwC. 2018 (PWC Report)
        • Reardon S.
        Rise of robot radiologists.
        Nature. 2019 Dec; 576 (PMID: 31853073): S54-S58https://doi.org/10.1038/d41586-019-03847-z
      4. Banerjee I, Bhimireddy AR, Burns J, et al. Reading Race: AI Recognizes Patient's Racial Identity in Medical Images. https://doi.org/10.48550/arXiv.2107.10356 Accessed 29 Mar 2022.

        • Shaw L.J.
        • Pepine C.J.
        • Xie J.
        • et al.
        Quality and equitable Health care gaps for women: attributions to sex differences in cardiovascular medicine.
        J Am Coll Cardiol. 2017 Jul 18; 70 (PMID: 28705320): 373-388https://doi.org/10.1016/j.jacc.2017.05.051
        • Geis J.R.
        • Brady A.P.
        • Wu C.C.
        • et al.
        Ethics of artificial intelligence in radiology: summary of the joint European and north American multisociety statement.
        Radiology. 2019 Nov; 293 (Epub 2019 Oct 1. PMID: 31573399): 436-440https://doi.org/10.1148/radiol.2019191586
        • Benaich N.
        • Hogarth I.
        State of AI report.
        (Available at:) (Accessed)
        • Haibe-Kains B.
        • Adam G.A.
        • Hosny A.
        • Khodakarami F.
        • Waldron L.
        • Wang B.
        • McIntosh C.
        • Goldenberg A.
        • Kundaje A.
        • Greene C.S.
        • Broderick T.
        • Hoffman M.M.
        • Leek J.T.
        • Korthauer K.
        • Huber W.
        • Brazma A.
        • Pineau J.
        • Tibshirani R.
        • Hastie T.
        • Ioannidis J.P.A.
        • Quackenbush J.
        • Massive Analysis Quality Control (MAQC) Society Board of Directors
        Nature. 2020 Oct; 586 (PMID: 33057217; PMCID: PMC8144864): E14-E16https://doi.org/10.1038/s41586-020-2766-y
        • McKinney S.M.
        • Sieniek M.
        • Godbole V.
        • et al.
        International evaluation of an AI system for breast cancer screening.
        Nature. 2020 Jan; 577 (Epub 2020 Jan 1. Erratum in: Nature. 2020 Oct;586(7829):E19. PMID: 31894144): 89-94https://doi.org/10.1038/s41586-019-1799-6
        • Andaur Navarro C.L.
        • Damen J.A.A.
        • Takada T.
        • et al.
        Completeness of reporting of clinical prediction models developed using supervised machine learning: a systematic review.
        BMC Med Res Methodol. 2022 Jan 13; 22 (PMID: 35026997; PMCID: PMC8759172): 12https://doi.org/10.1186/s12874-021-01469-6